Mustango: Toward Controllable Text-to-Music Generation.

Excited to announce Mustango, a powerful multimodal Model for generating music from textual prompts. Mustango leverages a Latent Diffusion Model conditioned on textual prompts (encoded using Flan-T5) and various musical features. Try the demo! What makes it different from the rest?
-- greater controllability in the music generation.
-- trained on a large dataset generated using ChatGPT and musical manipulations.
-- superior performance over its predecessors as per the experts.
-- open source!

Jan Melechovsky, Zixun Nicolas Guo, Deepanway Ghosal, Navonil Majumder, Dorien Herremans, and Soujanya Poria. 2023. Mustango: Toward Controllable Text-to-Music Generation. arXiv:2311.08355.

With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets.